Централизованное тестирование по математике, 2001 год повышенный уровень сложности

Часть А

А1. Множество решений неравенства $\frac{3}{4-r^2} \ge \frac{1}{4}$ есть

1.
$$(-\sqrt{8}; -2] \cup [2; \sqrt{8})$$

2.
$$(-\infty; -2) \cup (-2; 2) \cup (2; +\infty)$$

3.
$$(-\infty; -\sqrt{8}] \cup [\sqrt{8}; +\infty)$$

A2. Если $\sin \alpha = \frac{8}{17}$ и $\lg \alpha < 0$, то выражение $\operatorname{ctg} \frac{\alpha}{2}$ равно

1.
$$\frac{1}{4}$$
 или 4 2. 2 3. $\frac{1}{4}$ 4. $\frac{3}{5}$ 5. $\frac{5}{3}$

3.
$$\frac{1}{2}$$

4.
$$\frac{3}{5}$$

5.
$$\frac{5}{3}$$

А3. Если $a = \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{8}}$ и $b = \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{8}}$, то выражение $\frac{a^3 + b^3}{(a+b)^3}$ равно

1.
$$\frac{17}{32}$$
 2. $\frac{37}{32}$ 3. $\frac{47}{32}$ 4. $\frac{27}{32}$

2.
$$\frac{37}{32}$$

3.
$$\frac{47}{32}$$

4.
$$\frac{27}{32}$$

5. Другому числу

А4. Все значения параметра a, при которых уравнение $2\cos x - 5\sin x = a$ имеет корни, составляет отрезок

2.
$$[-3,5\sqrt{2};3,5\sqrt{2}]$$

A5. Все корни уравнения |x-7|-|x+2|=9 образуют множество:

3.
$$(-\infty; -2] \cup [7; +\infty)$$

4.
$$(-\infty; +\infty)$$

5.
$$(-\infty; -2]$$

А6. Все корни уравнения $\sin 3x = \sin \frac{\pi}{15}$ записываются формулой (где $n \in \mathbb{R}$):

1.
$$(-1)^n \frac{\pi}{45} + \frac{\pi n}{3}$$

2.
$$(-1)^n \frac{\pi}{45} + \frac{2\pi n}{3}$$

3.
$$(-1)^n \frac{\pi}{45} + \pi n$$

4.
$$(-1)^n \frac{\pi}{5} + \frac{\pi n}{3}$$

5.
$$\frac{(-1)^n}{3} \arcsin \frac{\pi}{15} + \frac{\pi n}{3}$$

А7. Количество целочисленных решений неравенства $\sqrt{\frac{18x-32-x^2}{37}} \le \frac{18x-32-x^2}{37}$ равно

1. 7

15 2.

3.

4. Др. числу **5.** Бесконечно

А8. Наименьшее целочисленное решение неравенства $4^{x-2}(\sqrt{5})^{4-x} \le \sqrt{0,05} \cdot 5^{\frac{x}{2}-1} \cdot 2^{x+\frac{1}{2}}$ отрезке [-7; 8] равно

1. 4

2. -7 **3.** 3

4. Др. числу **5.** Не существует

А9. Если $a = \log_y x$ и $b = \log_2 y$, то величина $\log_{\left(\frac{4}{2}\right)}(8\sqrt[4]{y})$ представляется в виде:

1.
$$\frac{12b+1}{8b-24a}$$

2.
$$\frac{12+b}{8-24ab}$$

3.
$$\frac{12+b}{2-6ba}$$

4. Другой дроби, не содержащей логарифмов и букв x, y

Не выражается через a и b

A10. Множество решений неравенства $\log_{\cos\frac{\pi}{4}}(x^2+7x+9) > 2$ на числовой прямой есть:

Вся прямая 1.

2. Пустое множество

Объединение двух интегралов

4. Один интеграл

5. Объединение двух лучей **A11.** Сумма всех корней уравнения $(5-7\cos x+7\sin x-3\sin 2x)\sqrt{\pi^2-x^2}=0$ равна

1.
$$\frac{\pi}{2}$$
 - 2 arcsin $\frac{1}{3\sqrt{2}}$

$$3. \quad -\frac{\pi}{2} + 2\arccos\frac{1}{3\sqrt{2}}$$

Содержат бесконечное число слагаемых

A12. Уравнение $9^x + 5 |a| \cdot 3^x + 64 = a^2$ не имеет корней тогда и только тогда, когда:

1.
$$|a| \le \frac{16}{\sqrt{29}}$$
 2. $|a| \le 8$ 3. $|a| < 8$ 4. $|a| < \frac{16}{\sqrt{29}}$ 5. $|a| < \frac{16}{\sqrt{21}}$

A13. Уравнение $5a \sin 2x = \cot x + \tan x$ имеет хотя бы один корень тогда и только тогда, когда:

2. $0 < a \le \frac{2}{5}$ **3.** $a = \frac{2}{5}$ **4.** $a \ge \frac{2}{5}$ **5.** $|a| \ge \frac{2}{5}$

A14. Уравнение $a(4\cos x - 7|x|) = 3 + 6^x + 6^{-x}$ имеет нечетное число корней тогда и только тогда, когда:

1.
$$a = 0$$

1. a = 0 **2.** $a = \frac{5}{4}$ **3.** $a \ge \frac{5}{4}$ **4.** Всегда **5.** Никогда

A15. Система $\begin{cases} x + 3ay = 9a^2, \\ 3ax + 16y = -64 \end{cases}$ имеет не более одного решения тогда и только тогда, когда:

1.
$$a = \frac{4}{3}$$

1. $a = \frac{4}{3}$ **2.** $a \neq 0$ **3.** $a = -\frac{4}{3}$ **4.** $a = \pm \frac{4}{3}$ **5.** Никогда

А16. Площадь фигуры, заданной на координатной плоскости неравенством $x^2 + y^2 \le 10 |x| + 4 |y|$, равна

1.
$$80 + 58\pi$$

 $160 + 58\pi$ 2.

 $80 + 116\pi$ 3.

4. $160 + 116\pi$

116π

А17. Наибольшее значение функции $f(x) = |4x \ln 2 - 2^x + 5 \ln 2|$ на отрезке [-1, 6] равно

1.
$$13 \ln 2 - 4$$

2.
$$29 \ln 2 - 64$$

3.
$$64-29 \ln 2$$

4.
$$4-13 \ln 2$$

Другому числу

А18. Касательная	К	графику	функции	$y = 5x - x^2 + 1$	В	точке	c	абсциссой	x_0	отсекает	O
положительной по	лу	оси вчетве	еро больши	ий отрезок, чем	от	отрица	тел	ьной полуо	си о	рдинат, то	гда
и только тогда, ког	гда	значение	x_0 pabho								

1.
$$\pm \frac{\sqrt{19}}{2\sqrt{3}}$$

2.
$$-\frac{\sqrt{19}}{2\sqrt{3}}$$
 3. $\pm \frac{\sqrt{19}}{2}$ 4. $\frac{\sqrt{19}}{2\sqrt{3}}$

3.
$$\pm \frac{\sqrt{19}}{2}$$

4.
$$\frac{\sqrt{19}}{2\sqrt{3}}$$

5.
$$\frac{\sqrt{19}}{2}$$

А19. При $x \le 0$ графики функций $y = \sqrt{x^2 + 6}$ и $y = \sqrt{x^2 - 6}$ симметричны друг другу относительно прямой вида (где c — некоторая константа):

- y = c x1.
- v = c2.
- 3. x = c
- y = c + x4.
- Такой прямой нет

A20. В прямоугольнике *ABC* с катетом AB = 9 и медианой BM = 7, проведенной к гипотенузе *AC*, расстояние между точкой M и основанием H высоты BH равно

1.
$$\frac{16}{7}$$

2.
$$\frac{17}{14}$$

3.
$$\frac{81}{14}$$

4.
$$\frac{81}{7}$$

2. $\frac{17}{14}$ 3. $\frac{81}{14}$ 4. $\frac{81}{7}$ 5. Другому числу

А21. Отрезок длины 7, соединяющий боковые стороны трапеции и параллельный ее основаниям, равным 9 и 3, делит площадь трапеции в отношении:

4.
$$\frac{7}{9}$$
: $\frac{3}{7}$

4. $\frac{7}{9}$: $\frac{3}{7}$ **5.** В другом

A22. Если в треугольной пирамиде SABC с высотой SH = 3 все боковые ребра наклонены под углом 30° к плоскости основания ABC, а угол BAC равен 45° , то длина ребра BC равна

1.
$$6\sqrt{2}$$

2.
$$\sqrt{6}$$

3.
$$3\sqrt{6-3\sqrt{2}}$$
 4. $3\sqrt{6}$

4.
$$3\sqrt{6}$$

Другому числу

А23. Если в правильной треугольной пирамиде SABC объемом 21 точка O — центр вписанной в треугольник SBC окружности, а боковое ребро в 7 раз больше ребра основания ABC, то объем пирамиды ОАВС равен

3.
$$\frac{21}{8}$$

4.
$$\frac{7}{5}$$

3. $\frac{21}{8}$ 4. $\frac{7}{5}$ 5. Другому числу

A24. В прямоугольном параллелепипеде ABCDA'B'C'D' с ребрами AA'=6, A'B'=5 и A'D'=8косинус угла ВА'Д равен

1.
$$-\frac{18}{5\sqrt{61}}$$
 2. $-\frac{33}{80}$ 3. $\frac{18}{5\sqrt{61}}$ 4. $\frac{33}{80}$

2.
$$-\frac{33}{80}$$

3.
$$\frac{18}{5\sqrt{61}}$$

4.
$$\frac{33}{80}$$

5. Другому числу

A25. Площадь полной поверхности цилиндра объемом 11 как функция радиуса r > 0:

- 1. Максимальна при $r = \sqrt[3]{\frac{11}{\pi}}$
- **2.** Минимальна при $r = \sqrt[3]{\frac{11}{\pi}}$
- **3.** Максимальна при $r = \sqrt[3]{\frac{11}{2\pi}}$
- **4.** Минимальна при $r = \sqrt[3]{\frac{11}{2\pi}}$
- **5.** Не имеет экстремума при r > 0

Часть В

Ответы к заданиям части B запишите в бланке ответов рядом с номером задания, начиная с первого окошка. Ответом может быть только число. Каждую цифру числа (и знак минус, если имеется) пишите в отдельном окошке по приведенным образцам.

- **В1.** Окружность, проходящая через вершины B и C треугольника ABC, пересекает стороны AB и AC в точках M и N соответственно, а отрезки BN и CM пересекаются в точке K. Если $\angle BAC = 25^\circ$ и $\angle MCN = 40^\circ$, то величина угла (в градусах) равна...
- **В2.** Количество корней уравнения $x^{7-4x} = x^{\log_5 x^3}$ равно...
- **ВЗ.** Из пункта A в пункт B выехал мотоциклист и одновременно с ним из B в A велосипедист, причем встретились они через $3\frac{1}{3}$ часа, а мотоциклист прибыл в пункт B на 3 часа раньше, чем велосипедист в A, то число часов, за которое велосипедист проезжает расстояние от A до B, равно...
- **В4.** Если сумма членов убывающей арифметической прогрессии с третьего по одиннадцатый включительно равна 27, то член этой прогрессии, равный 3, имеет номер...
- **В5.** Количество двузначных чисел, каждое из которых при делении на цифру единиц его десятичной записи дает в частном 7 и в остатке 4, равно...

Ответы

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12	A13	A14
4	3	1	5	5	5	3	1	2	3	4	2	4	2

Ī	A15	A17	A17	A18	A19	A20	A21	A22	A23	A24	A25
ĺ	3	1	3	2	1	2	1	4	4	3	4

B1	B2	В3	B4	B5
105	2	8	7	1