Санкт-Петербургский государственный университет, 1990

математико-механический факультет

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ

Вариант 1

- **1.** а) Изобразите на координатной плоскости множество таких точек, координаты которых удовлетворяют неравенству $x^2y + xy^2 \le 2xy$.
 - б) Решите уравнение $tg x = \cos x$.
 - в) Покажите, не прибегая к помощи микрокалькулятора, что $2,25 < \log_2 5 < 2,5$.
- Γ) В трапеции ABCD AB=15 см, AD=5 см. Найдите длины двух других сторон этой трапеции, если известно, что одна из диагоналей делит ее на два треугольника равной площади.
- **2.** Дана функция $f(x) = \sqrt{4|x| x^2}$.
 - а) Решите уравнение f(x) = -x 2.
 - б) Решите неравенство f(x) > x 5.
- в) Исследуйте, сколько корней в зависимости от значения действительного параметра a имеет уравнение f(x) = a.
- **3.** Равнобедренный треугольник с углом ф при вершине вписан в равносторонний треугольник со стороной 2 так, что эта вершина совпадает с серединой стороны равностороннего треугольника.
 - а) Найдите выражение для площади $S(\varphi)$ этого треугольника.
 - б) Покажите, что $S(\varphi) = \frac{3\sin\varphi}{8\sin^2\left(\frac{\varphi}{2} + \frac{\pi}{6}\right)}$.
 - в) Докажите, что $S(\phi) \le \frac{\sqrt{3}}{4}$.
- **4.** а) Найдите площадь подграфика функции $f(x) = \min\{\sqrt{x}; 2-x\}$, $x \in [0; 2]$.
 - б) Покажите, что $\int_{0}^{1} \sqrt{1-x^{2}} dx = \frac{\pi}{4}$.
 - в) Докажите, что для любых четырех чисел a,b,p,q>0, $\frac{1}{p}+\frac{1}{q}=1$, верно

неравенство $\int\limits_0^a x^{p-1} dx + \int\limits_0^b x^{q-1} dx \ge ab$. В каком случае имеет место равенство?

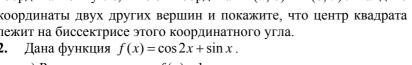
Санкт-Петербургский государственный университет, 1990

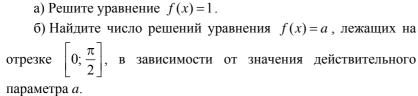
математико-механический факультет

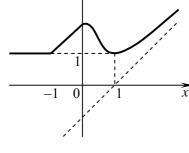
РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ

Вариант 2

- 1. а) Изобразите на координатной плоскости множество точек, координаты которых удовлетворяют неравенству $\sin(x+y) \cdot \sin(x-y) > 0$.
 - б) Решите уравнение $\log_2^2(-x) 1 \log_2 \frac{x}{2} = 0$.
- в) На рисунке изображен график функции. Нарисуйте график производной этой функции и дайте необходимые пояснения.
- г) Две вершины квадрата, расположенного в первом координатном угле, имеют координаты (a; 0) и (0; b). Найдите координаты двух других вершин и покажите, что центр квадрата лежит на биссектрисе этого координатного угла.







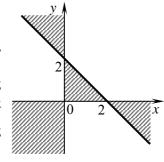
- в) Найдите множество значений функции f.
- а) Покажите, что $\sqrt{x+y} \le \sqrt{x} + \sqrt{y} \le \sqrt{2(x+y)}$ при всех $x, y \ge 0$.
- б) Единичный квадрат разделен двумя отрезками на четыре прямоугольника. Докажите, что произведение площадей двух не смежных прямоугольников не превосходит $\frac{1}{16}$
 - в) Найдите наибольшее значение произведения $x \cdot y$, если известно, что $x^2 + xy + y^2 \le 1$.
- **4.** Дана функция $f(x) = x^2$. Пусть $t \in [0; 1]$. Обозначим S(t) сумму площадей двух криволинейных треугольников, ограниченных графиком ϕ ункции f, прямыми x = 0, x = 1 и горизонтальной прямой, проходящей через точку графика функции с абсциссой x = t.
 - а) Получите явную формулу для функции S(t).
 - б) Найдите точку минимума функции S.
 - в) Выполните пункт б) в случае, если $f(x) = \ln(x+1)$.

Санкт-Петербургский государственный университет, 1990 математико-механический факультет

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ

Ответы к варианту 1

1. а) см. рисунок; б) $\left\{ (-1)^k \arcsin \frac{\sqrt{5}-1}{2} + \pi k : k \in \mathbb{Z} \right\}$; г) BC = 5 см, CD = 15 см. **2.** а) $\{-2 - \sqrt{2}\}$; б) [-4; 4]; в) если a = 0: 3 решения; если 0 < a < 2: 4 решения; если a = 2: 2 решения; в остальных случаях решений нет. **3.** а)-б) $S(\phi) = \frac{3\sin\phi}{8\sin^2\left(\frac{\pi}{6} + \frac{\phi}{2}\right)}$. **4.** а) $\frac{7}{6}$;



B) $a = b^{q-1}$.

Санкт-Петербургский государственный университет, 1990

математико-механический факультет

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ

Ответы к варианту 2

1. а) см. рисунок 1; б) $\{-2; -1\}$; в) см. рисунок 2; г) C(b; a+b), D(a+b; a). **2.** а) $\left\{\pi k; \frac{\pi}{6} + 2\pi k; \frac{5\pi}{6} + 2\pi k : k \in \mathbb{Z}\right\}$; б) если a < 0 и $a > \frac{9}{8}$: \emptyset ; если $a \in [0; 1) \cup \left\{\frac{9}{8}\right\}$: 1 решение; если $a \in \left[1; \frac{9}{8}\right]$: 2 решения; в) $\left[-2; \frac{9}{8}\right]$. **3.** в) $x \cdot y = \frac{1}{3}$ при $x = y = \frac{1}{\sqrt{3}}$. **4.** а) $S(t) = \frac{4}{3}t^3 - t^2 + \frac{1}{3}$; б) $S\left(\frac{1}{2}\right) = \frac{1}{4}$.

