математико-механический факультет

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ

Вариант 1

- **1.** а) Найдите все такие значения a и b, что система неравенств $\begin{cases} x + |y a| \le b, \\ y \ge 2|x b| \end{cases}$ имеет единственное решение.
- б) Докажите, что кривая $x^4 + 1994x^3y 6x^2y^2 1994xy^3 + y^4 = 0$ делит единичную окружность на восемь равных дуг.
- в) Докажите, что при любом натуральном k уравнение $x^2 y^2 = k^{1993}$ разрешимо в целых числах.
- **2.** a) Решите неравенство $x + \sqrt[3]{|3x+1|-1} \ge 0$.
 - б) Найдите все решения уравнения $\cos 2x = a(\cos x \sin x)$, лежащие в отрезке $[0; \pi]$.
 - в) Решите уравнение $3^{2x} = 2^{2x} + 3^x + 2^x$.
- **3.** а) Найдите уравнения тех касательных к графику функции $y = \ln x$, которые проходят через начало координат.
 - б) При каких значениях a уравнение $\ln x = ax$ имеет решения?
 - в) Сколько решений имеет уравнение $6^x = x^6$?
 - г) Сколько рациональных решений имеет уравнение пункта в)?
- **4.** а) Докажите, что число различных способов замощения полоски размером $2 \times n$ «доминошками» равно n-му числу Фибоначчи.
 - б) Найдите формулу для суммы квадратов коэффициентов в разложении бинома $(x+1)^n$.
- в) Шестеро учеников готовятся к ответу, сидя в один ряд на скамье за общим столом. Учитель может вызвать их в любом порядке. Какова вероятность того, что, выходя к доске, хотя бы один из них потревожит другого?

математико-механический факультет

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ

Вариант 2

- **1.** a) Сколько решений в зависимости от *a* имеет уравнение |x-1|+|x-2|+...+|x-1994|=a?
 - б) Докажите, что при любом натуральном n число $n^{1994} 1994 n + 1993$ делится на $(n-1)^2$.
- в) Докажите неравенство $\frac{2-\sqrt{2+\sqrt{2+\sqrt{2+\dots}}}}{2-\sqrt{2+\sqrt{2+\dots}}} > \frac{1}{4}$, где в числителе дроби 1994 квадратных корня, в знаменателе 1993.
- **2.** a) Решите неравенство $x \le \sqrt[3]{|3x-1|-1}$.
 - б) Найдите все решения уравнения $\cos 2x + b(\cos x + \sin x) = 0$, лежащие в отрезке $[0; \pi]$.
 - в) Решите уравнение $5^{2x} = 3^{2x} + 2 \cdot 5^x + 2 \cdot 3^x$.
- **3.** а) Найдите уравнения тех касательных к графику функции $y = e^x$, которые проходят через начало координат.
 - б) При каких значениях a уравнение $e^x = ax$ имеет решения?
 - в) Сколько решений имеет уравнение $10^x = x^{10}$?
 - г) Сколько рациональных решений имеет уравнение пункта в)?
- **4.** а) Сколькими способами можно расположить на шахматной доске квадрат из целого числа ее клеток?
- б) Сколько существует n-позиционных двоичных чисел, в которых нулей не меньше чем единиц?
- в) Вася и Оля договорились о встрече между 17 и 18 часами. Вася будет ждать Олю в течение 30 минут после своего прихода, а Оля Васю 10 минут. Какова вероятность их встречи, если каждый из них может подойти к назначенному месту в любой момент времени между 17 и 18 часами?

математико-механический факультет

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ

Ответы к варианту 1

1. а)
$$a=0$$
, b — любое. **2.** а) $[0;+\infty)\cup\{-1\}$; б) если a — любое число: $\left\{\frac{\pi}{4}\right\}$; если $1\leq a<\sqrt{2}$: $\left\{\frac{\pi}{4}\pm\arccos\frac{a}{\sqrt{2}}\right\}$; если $-1\leq a<1$: $\left\{\frac{\pi}{4}+\arccos\frac{a}{\sqrt{2}}\right\}$; в) $\{1\}$. **3.** а) $y=\frac{x}{e}$; б) $\left(-\infty;\frac{1}{e}\right]$; в) 3 решения; г) одно рациональное решение: $x=6$. **4.** б) $\sum_{k=0}^{n}(C_{n}^{k})^{2}=C_{2n}^{n}$; в) $\frac{43}{45}$.

математико-механический факультет

РЕГИОНАЛЬНАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ

Ответы к варианту 2

1. а) при $a > 997^2$: 2 решения; при $a = 997^2$: бесконечно много решений; при $a < 997^2$: решений нет. **2.** а) $(-\infty; 0) \cup \{1\}$; б) если b — любое число: $\left\{\frac{3\pi}{4}\right\}$; если $1 \le b < \sqrt{2}$: $\left\{\frac{3\pi}{4} \pm \arccos\left(-\frac{b}{\sqrt{2}}\right)\right\}$; если $-1 \le b < 1$: $\left\{\frac{3\pi}{4} - \arccos\left(-\frac{b}{\sqrt{2}}\right)\right\}$; в) $\{1\}$. **3.** а) y = ex; б) $(-\infty; 0) \cup [e; +\infty)$; в) 3 решения; г) одно рациональное решение: x = 10. **4.** а) 204 способа; б) 2^{n-1} ; в) $\frac{19}{36}$.