Из трех сюжетов на выбор следует выбрать один. Таким образом, получится 3 сюжета: два обязательных и один выбранный. Для получения оценки «5» достаточно верно и полностью решить любые 10 из 12 полученных таким образом заданий.

Вариант 1

Обязательные задачи

- 1. Дана функция $f(x) = 2\sin x \cos^2\left(\frac{\pi}{4} \frac{x}{2}\right)$.
- а) Решите уравнение f(x) = 0.
- б) Решите неравенство $f(x) \ge 2\sin x$ на интервале $(-\pi; \pi)$.
- в) Найдите наименьшее значение функции f(x).
- г) Выясните, сколько корней имеет уравнение $\frac{f(x)}{\sin x a} = 0$ на отрезке $\left[-\pi; \frac{\pi}{2} \right]$ в зависимости от параметра a.
 - 2. Дана функция $f(x) = \frac{2^{x+2}+1}{2^x+1}$.
- a) Вычислите $f\left(\frac{\log_3 5}{\log_3 2}\right)$.
- б) Решите уравнение f(x) = 3.
- в) Найдите множество значений функции f(x).
- г) Постройте график функции f(x) на луче $(-\infty; 0]$.

Сюжеты на выбор (выбирается один из трех)

- 3А. Дана функция $f(x) = \sqrt{x^2 x + 4}$.
- а) Решите уравнение f(x) = 2x.
- б) Решите неравенство $\frac{f(x)}{3x-2} \ge 1$.
- в) Проверьте, является ли точка с координатами (2,5;3) серединой какого-либо отрезка, концы которого лежат на графике функции f(x).
- г) Найдите все значения параметра a такие, что функция g(x) = f(x a) является четной.
 - 3Б. Дана функция $f(x) = \frac{x^2}{2} + \frac{8}{x^2}$.
- а) Найдите первообразную функции f(x) на множестве $(0; +\infty)$, график которой проходит через точку A(1; -6).
- б) Постройте график функции f(x).
- в) Проверьте, является ли прямая l, заданная уравнением y = -15x + 23,5, касательной к графику функции f(x).
- г) Найдите площадь фигуры, ограниченной графиком функции f(x), осью абсцисс и прямыми l и x=3.
 - 3В. Дано комплексное число a = 1 + i.
- а) Изобразите на чертеже множество всех таких комплексных чисел z, что |z+a| = |a|.
- б) Проверьте, являются ли числа a и -a корнями уравнения $z^4 3z^3 3z^2 + 10 = 0$.
- в) Изобразите на чертеже множество M всех комплексных чисел z таких, что $a\overline{z} + \overline{a}z = |a|$.
- г) Найдите наименьшее значение выражения |z-a|+|z+a| для $z \in M$.

Из трех сюжетов на выбор следует выбрать один. Таким образом, получится 3 сюжета: два обязательных и один выбранный. Для получения оценки «5» достаточно верно и полностью решить любые 10 из 12 полученных таким образом заданий.

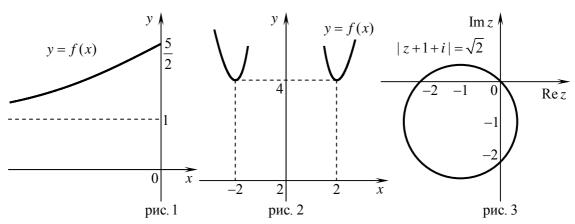
Вариант 2

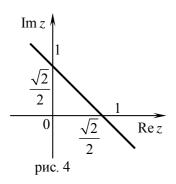
Обязательные задачи

- 1. Дана функция $f(x) = 2\cos x \cos^2\left(\frac{x}{2} \frac{\pi}{2}\right)$.
- а) Решите уравнение f(x) = 0.
- б) Решите неравенство $f(x) \le 2\cos x$ на интервале $\left(\frac{\pi}{2}; \frac{5\pi}{2}\right)$.
- в) Найдите наибольшее значение функции f(x).
- г) Выясните, сколько корней имеет уравнение $\frac{f(x)}{b + \cos x} = 0$ на отрезке $\left[-\frac{\pi}{2}; \pi \right]$ в зависимости от параметра b.
 - 2. Дана функция $f(x) = \frac{3^{x+1} + 1}{3^x + 2}$.
- а) Вычислите $f\left(\frac{\log_5 4}{\log_5 3}\right)$.
- б) Решите уравнение f(x) = 2.
- в) Найдите множество значений функции f(x).
- г) Постройте график функции f(x) на луче $(-\infty; 0]$.

Сюжеты на выбор (выбирается один из трех)

- 3А. Дана функция $f(x) = \sqrt{x^2 2x + 9}$.
- а) Решите уравнение f(x) = 3 2x.
- б) Решите неравенство $\frac{1}{f(x)} \le \frac{1}{2x-1}$.
- в) Точка M(1;3) является серединой отрезка с концами на графике функции f(x). Найдите координаты концов отрезка
- г) Найдите все значения параметра b такие, что функция g(x) = f(x+b) является четной.
 - 3Б. Дана функция $f(x) = x^3 + \frac{3}{x}$.
- а) Найдите первообразную функции f(x) на множестве $(0; +\infty)$, график которой проходит через точку A(1; 2).
- б) Постройте график функции f(x).
- в) Проверьте, является ли прямая l, заданная уравнением y = -11,25x-13, касательной к графику функции f(x).
- г) Найдите площадь фигуры, ограниченной графиком функции f(x), осью абсцисс и прямыми l и x=0,5.
 - 3В. Дано комплексное число b = 1 i.
- а) Изобразите на чертеже множество всех таких комплексных чисел z, что |z-b| = |b|.
- б) Проверьте, являются ли числа b и -b корнями уравнения $3z^4 + z^3 z^2 + 14 = 0$.
- в) Изобразите на чертеже множество K всех комплексных чисел z таких, что $\overline{bz} bz = |b|i$.
- г) Найдите наименьшее значение выражения |z+b|+|z-b| для $z \in K$.

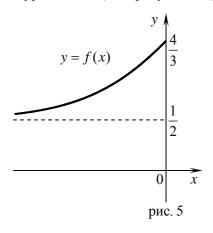

Ответы к варианту 1

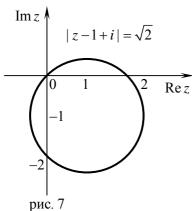

Обязательные задачи

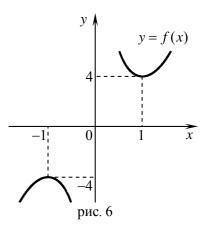
1. а) $\left\{\pi k; -\frac{\pi}{2} + 2\pi k : k \in \mathbb{Z}\right\}$; б) $(-\pi; 0] \cup \left\{\frac{\pi}{2}\right\}$; в) $-\frac{1}{4}$; г) если $a \neq 0$ и $a \neq -1$, то 3 корня; если a = 0, то 1 корень; если a = -1, то 2 корня. **2.** а) $\frac{7}{2}$; б) $\{1\}$; в) (1; 4); г) см. рисунок 1.

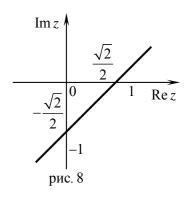
Сюжеты на выбор

3А. а) $\{1\}$; б) $\left(\frac{2}{3};\frac{11}{8}\right]$; в) да, с концами в точках с координатами (1;2) и (4;4); г) $a=-\frac{1}{2}$. **3Б.** а) $F(x)=\frac{x^3}{6}-\frac{8}{x}+\frac{11}{6}$; б) см. рисунок 2; в) да, является, в точке с абсциссой $x_0=1$; г) $\frac{871}{120}$. **3В.** а) см. рисунок 3; б) число -a — корень уравнения; в) см. рисунок 4; г) $2\sqrt{2}$.


Ответы к варианту 2


Обязательные задачи


1. а) $\left\{\frac{\pi}{2} + \pi k; 2\pi k : k \in \mathbb{Z}\right\}$; б) $\left[\frac{3\pi}{2}; \frac{5\pi}{2}\right] \cup \{\pi\}$; в) $\frac{1}{4}$; г) если $b \neq 0$ и $b \neq -1$, то 3 корня; если b = 0, то 1 корень; если b = -1, то 2 корня. **2.** а) $\frac{13}{6}$; б) $\{1\}$; в) $\left(\frac{1}{2}; 3\right)$; г) см. рисунок 5.


Сюжеты на выбор

3A. a) $\{0\}$; б) $\left(\frac{1}{2};2\right]$; в) (0;3) и (2;3); г) b=1. 3Б. a) $F(x)=\frac{x^4}{4}+3\ln x+\frac{7}{4}$; б) см. рисунок 6; в) да, является, в точке с абсциссой $x_0=2$; г) $6\ln 2-\frac{77}{2880}$. 3В. a) см. рисунок 7; б) число b — корень уравнения; в) см. рисунок 8; г) $2\sqrt{2}$.

