Из трех сюжетов на выбор следует выбрать один. Таким образом, получится 3 сюжета: два обязательных и один выбранный. Для получения оценки «5» достаточно верно и полностью решить любые 10 из 12 полученных таким образом заданий.

### Вариант 1

## Обязательные задачи

- 1. Дана функция  $f(x) = \frac{\cos 2x}{\sin x}$ .
- а) Решите уравнение f(x) = 1.
- б) Решите неравенство  $f(x) \le 0$  на отрезке  $\left[\frac{3\pi}{4}; \frac{3\pi}{2}\right]$ .
- в) Сравните числа  $f\left(\frac{2\pi}{11}\right)$  и 1.
- г) Найдите множество значений функции f(x).
  - 2. Дана функция  $f(x) = \log_2 x \cdot \log_2(4x)$ .
- а) Решите неравенства f(x) < 3.
- б) Решите уравнение f(x) = |f(4x)|.
- в) Найдите промежутки монотонности функции f(x).
- г) Выясните, существует ли такое положительное число a, что уравнение f(x) = f(ax) имеет ровно два решения.

# Сюжеты на выбор (выбирается один из трех)

- 3A. Рассматриваются комплексные числа z и  $u = z + \frac{2}{z}$ .
- а) Запишите в алгебраической форме все числа z такие, что u = -i.
- б) Изобразите на чертеже совокупность всех чисел z таких, что  $\arg z = \frac{\pi}{2}$  и  $|u| \le 1$ .
- в) Пусть  $|z| \le 1$ . Найдите наименьшее значение расстояния между точками комплексной плоскости, соответствующими z и u.
- г) Пусть |z|=1. Найдите наибольшее значение площади треугольника с вершинами в точках, соответствующих z и u, и начале координат O.
  - 3Б. Дана функция  $f(x) = \frac{x^2 x + 1}{x}$ .
- а) Напишите уравнения касательных к графику функции f(x), параллельных оси абсцисс.
- б) Постройте график функции f(x) на отрезке [-3; 3].
- в) Докажите, что  $\int_{0.5}^{2} f(x) dx < \frac{9}{4}$ .
- г) Найдите наименьшее значение площади фигуры, ограниченной графиком функции f(x) и прямыми y=0, x=a, x=a+1,5, для a>0.
  - 3В. Дана функция  $f(x) = \sqrt{4x+1}$ .
- а) Решите уравнение (f(x)-1,5x)(f(x)-3)=0.
- б) Изобразите на чертеже множество всех точек с координатами (x; y) такими, что  $1,5x \le y \le f(x)$ .
- в) Наудачу выбирается целое число a из отрезка [-15;15]. Определите вероятность того, что уравнение f(x) = a имеет целое решение.
- г) Найдите все значения параметра a такие, что уравнение f(x) = ax имеет решение на отрезке (0; 2).

Из трех сюжетов на выбор следует выбрать один. Таким образом, получится 3 сюжета: два обязательных и один выбранный. Для получения оценки «5» достаточно верно и полностью решить любые 10 из 12 полученных таким образом заданий.

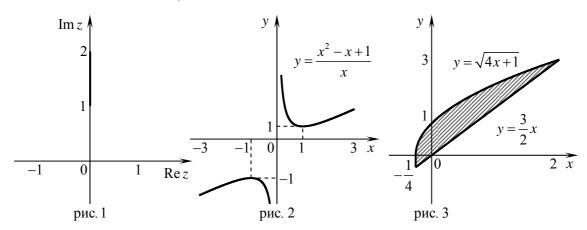
# Вариант 2

### Обязательные задачи

- 1. Дана функция  $f(x) = \frac{\cos 2x}{\cos x}$ .
- а) Решите уравнение f(x) = -1.
- б) Решите неравенство  $f(x) \ge 0$  на отрезке  $\left[\frac{\pi}{2}, \frac{5\pi}{4}\right]$ .
- в) Сравните числа  $f\left(\frac{2\pi}{7}\right)$  и -1.
- $\Gamma$ ) Найдите множество значений функции f(x).
  - 2. Дана функция  $f(x) = \log_3 \frac{x}{3} \cdot \log_3 x$ .
- а) Решите неравенства f(x) > 6.
- б) Решите уравнение  $|f(x)| = f\left(\frac{x}{3}\right)$ .
- в) Найдите промежутки монотонности функции f(x).
- г) Выясните, сколько корней имеет уравнение  $f(x) = f(x \cdot a^{-1})$  в зависимости от a (при a > 0).

# Сюжеты на выбор (выбирается один из трех)

- 3A. Рассматриваются комплексные числа z и  $u = z \frac{3}{z}$ .
- а) Запишите в алгебраической форме все числа z такие, что u = -4i.
- б) Изобразите на чертеже совокупность всех чисел z таких, что  $\arg z = \frac{3\pi}{2}$  и  $|u| \le 4$ .
- в) Пусть  $|z| \ge 1$ . Найдите наибольшее значение расстояния между точками комплексной плоскости, соответствующими z и u.
- г) Пусть |z|=1. Найдите наибольшее значение площади треугольника с вершинами в точках, соответствующих  $-\frac{3}{z}$  и u, и начале координат O.
  - 3Б. Дана функция  $f(x) = \frac{x^2 + 2x + 2}{x + 1}$ .
- а) Напишите уравнения касательных к графику функции f(x), параллельных оси абсцисс.
- б) Постройте график функции f(x) на отрезке [-3; 3].
- в) Докажите, что  $\int_{-0.5}^{1} f(x)dx < \frac{15}{4}$ .
- г) Найдите наименьшее значение площади фигуры, ограниченной графиком функции f(x) и прямыми y = 0, x = a, x = a + 1, 5, для a > -1.
  - 3В. Дана функция  $f(x) = \sqrt{1-2x}$ .
- а) Решите уравнение (3 f(x))(f(x) + 0.75x) = 0.
- б) Изобразите на чертеже множество всех точек с координатами (x; y) такими, что  $-0.75x \le y \le f(x)$ .
- в) Наудачу выбирается целое число a из отрезка [-12;12]. Определите вероятность того, что уравнение f(x) = a имеет целое решение.
- г) Найдите все значения параметра a такие, что уравнение f(x) = ax имеет решение на отрезке [-4; 0].


### Ответы к варианту 1

#### Обязательные задачи

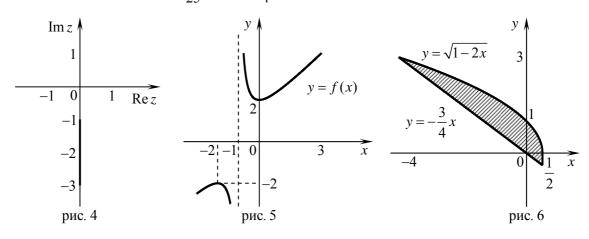
1. а) 
$$\left\{ \frac{3\pi}{2} + 2\pi k; (-1)^k \frac{\pi}{6} + \pi k : k \in \mathbb{Z} \right\};$$
 б)  $\left[ \pi; \frac{5\pi}{4} \right] \cup \left\{ \frac{3\pi}{4} \right\};$  в)  $f\left( \frac{2\pi}{11} \right) < 1;$  г)  $\mathbb{R}$ . 2. а)  $\left( \frac{1}{8}; 2 \right);$  б)  $\left\{ \frac{1}{4} \right\};$  в) на  $\left( 0; \frac{1}{2} \right]$  функция убывает; на  $\left[ \frac{1}{2}; +\infty \right]$  — возрастает; г) не существует.

# Сюжеты на выбор

**3А.** а) i, -2i; б) см. рисунок 1; в) 2; г) 1. **3Б.** а) y = 1, y = -3; б) см. рисунок 2; г)  $\frac{3}{8} + \ln 4$ . **3В.** а)  $\{2\}$ ; б) см. рисунок 3; в)  $\frac{8}{31}$ ; г)  $a > \frac{3}{2}$ .



# Ответы к варианту 2


Обязательные задачи

**1.** a) 
$$\left\{ \pi + 2\pi k; \pm \frac{\pi}{3} + 2\pi k : k \in \mathbb{Z} \right\};$$
 6)  $\left( \frac{\pi}{2}; \frac{3\pi}{4} \right] \cup \left\{ \frac{5\pi}{4} \right\};$  B)  $f\left( \frac{2\pi}{7} \right) > -1;$   $\Gamma$ 

**2.** а)  $\left(0; \frac{1}{9}\right) \cup (27; +\infty)$ ; б)  $\{3\}$ ; в) на  $(0; \sqrt{3}]$  функция убывает; на  $[\sqrt{3}; +\infty)$  — возрастает; г) при a=1 — бесконечно много решений; при  $a\neq 1$  — один корень.

# Сюжеты на выбор

**3А.** а) -i, -3i; б) см. рисунок 4; в) 3; г)  $\frac{3}{2}$ . **3Б.** а) y = 2, y = -2; б) см. рисунок 5; г)  $\frac{15}{8} + \ln 4$ . **3В.** а)  $\{-4\}$ ; б) см. рисунок 6; в)  $\frac{6}{25}$ ; г)  $a > -\frac{3}{4}$ .

